

Email: j.ensor@bham.ac.uk Twitter: @joie_ensor

pm-suite

- Aid across the stages of clinical prediction modelling
- Methodology & TRIPOD embedded
- Useful for:
 - Design
 - Analysis
 - Reporting

CPM stages

Development &

Internal Validation

External Validation &

Updating

Implementation & Impact

Model development

Variable selection

Functional forms

Internal validation of our development process

- Assess model's validity within the same population
- Bootstrapping or cross-validation
- Quantify optimism
- Adjust our model

Measure the *performance* of the model

- At development performance estimates are optimistic
- After internal validation we adjust performance measures for optimism

External validation

- Assess model's validity in patients separate from the first stage
- Models are developed to be applied in new individuals, so their value depends on their performance outside of the development sample

Model performance

- How *accurate* & *reliable* is the model?
- Assess model reproducibility or transportability

Model updating

- Inadequate performance could indicate updating
- Adjust the model to improve accuracy & reliability in a new setting/population

pm-suite

Development &

Internal Validation

External Validation & Updating

pmsampsize
pmintval

pmstats
pmcalplot

pmvalsampsize
 pmupdate

pmiecv
pmcstat

pmsplot
pmmeta

"Only nine of 119 studies (8%) reported a sample size calculation"

Dhiman et al. 2023

Sample size considerations

- We want to have a large enough sample size to develop a model that predicts as accurately as we can
- Important when conducting a prospective study
 - How many individuals do I need to collect?
- Important when using existing data
 - Is my available data large enough?
 - How many predictors can I consider?

pmsampsize

- Minimum sample size required for developing a prediction model
- Calculates sample size that is needed to,
 - minimise potential overfitting
 - estimate parameters precisely (e.g., intercept)
- Implements a series of closed form solutions

NB: Assuming 0.05 acceptable difference in apparent & adjusted R-squared

NB: Assuming 0.05 margin of error in estimation of intercept

NB: Events per Predictor Parameter (EPP) assumes prevalence = .05

	Samp_size	Shrinkage	Parameter	CS_Rsq	Max_Rsq	Nag_Rsq	EPP
Criteria 1	4466	.9	25	.049	.328	.15	8.93
Criteria 2	1476	.749	25	.049	.328	.15	2.95
Criteria 3	73	•	25	.049	.328	.15	.15
Final SS	4466	.9	25	.049	.328	.15	8.93

Minimum sample size required for new model development based on user inputs = 4466, with 224 events (assuming an outcome prevalence = .05), and an EPP = 8.93

Criteria 1 - small overfitting defined as expected shrinkage of predictor effects by 10% or less Criteria 2 - small absolute difference in model's apparent and adjusted Nagelkerke's R-squared Criteria 3 - precise estimation of the average outcome risk in the population

NB: Assuming 0.05 acceptable difference in apparent & adjusted R-squared

NB: Assuming 0.05 margin of error in estimation of intercept

NB: Events per Predictor Parameter (EPP) assumes prevalence = .05

	Samp_size	Shrinkage					
Criteria 1		.9		.049	.328	.15	8.93
Criteria 2	1476	.749		.049	.328	.15	2.95
Criteria 3	73	٠	25	.049	.328	.15	.15
Final SS		.9	25	.049	.328	.15	8.93

Minimum sample size required for new model development based on user inputs = 4466, with 224 events (assuming an outcome prevalence = .05), and an EPP = 8.93

Criteria 1 - small overfitting defined as expected shrinkage of predictor effects by 10% or less Criteria 2 - small absolute difference in model's apparent and adjusted Nagelkerke's R-squared Criteria 3 - precise estimation of the average outcome risk in the population

NB: Assuming 0.05 acceptable difference in apparent & adjusted R-squared

NB: Assuming 0.05 margin of error in estimation of intercept

NB: Events per Predictor Parameter (EPP) assumes prevalence = .05

	Samp_size	Shrinkage					
Criteria 1		.9		.049	.328	.15	8.93
Criteria 2	1476	.749		.049	.328	.15	2.95
Criteria 3	73	•	25	.049	.328	.15	.15
Final SS		.9	25	.049	.328	.15	8.93

Minimum sample size required for new model development based on user inputs = 4466, with 224 events (assuming an outcome prevalence = .05), and an EPP = 8.93

Criteria 1 - small overfitting defined as expected shrinkage of predictor effects by 10% or less

Criteria 2 - small absolute difference in model's apparent and adjusted Nagelkerke's R-squared

Criteria 3 - precise estimation of the average outcome risk in the population

NB: Assuming 0.05 acceptable difference in apparent & adjusted R-squared

NB: Assuming 0.05 margin of error in estimation of intercept

NB: Events per Predictor Parameter (EPP) assumes prevalence = .05

	Samp_size	Shrinkage	Parameter	CS_Rsq	Max_Rsq	Nag_Rsq	EPP
Criteria 1	4466	.9	25	.049	.328	.15	8.93
Criteria 2	1476	.749	25	.049	.328	.15	2.95
Criteria 3	73	•	25	.049	.328	.15	.15
Final SS	4466	.9	25	.049	.328	.15	8.93

Minimum sample size required for new model development based on user inputs = 4466, with 224 events (assuming an outcome prevalence = .05), and an EPP = 8.93

Criteria 1 - small overfitting defined as expected shrinkage of predictor effects by 10% or less Criteria 2 - small absolute difference in model's apparent and adjusted Nagelkerke's R-squared Criteria 3 - precise estimation of the average outcome risk in the population

- Options to specify anticipated performance of new model include:
 - Cox-Snell R-squared
 - Nagelkerke's R-squared
 - C statistic

. pmsampsize, type(b) prevalence(0.05) parameters(25) cstat(0.79)

Given C-statistic = .79 & prevalence = .05

Cox-Snell R-sq = 0.0586

Sample size considerations

- We want to have a large enough sample size to develop a model that predicts as accurately as we can
- Important when conducting a **prospective** study
 - How many individuals do I need to collect?
- Important when using **existing data**
 - Is my available data large enough?
 - How many predictors can I consider?

. pmsampsize, type(b) prevalence(0.05) rsquared(0.059) n(3688)

NB: Assuming 0.05 acceptable difference in apparent & adjusted R-squared

NB: Events per Predictor Parameter (EPP) assumes prevalence = .05

	Samp_size	Shrinkage	Parameter	Rsq			
Criteria 1	3688	.9	25	.059	.328	.18	7.38
Criteria 2	3688	.783	62	.059	.328	.18	2.97
Criteria 3 *	3688	.9	25	.059	.328	.18	7.38
Final	3688	.9	25	.059	.328	.18	7.38

Maximum number of predictor parameters that could be estimated during new model development based on user inputs = 25, with 185 events (assuming an outcome prevalence = .05) & an EPP = 7.38

^{* 95%} CI for overall risk = (.043, .057), for true value of .05, sample size n=3688 Absolute margin of error = .007

"An explanation of sample size was reported in only 9% of validation studies"

Collins et al. 2014

Sample size for validation studies

What do we want?

We want to have a large enough sample size to ...

Development

 develop a model that predicts as accurately as we can

Validation

 accurately and precisely estimate model performance

pmvalsampsize

- Minimum sample size required for external validation of a prediction model
- Calculates sample size needed to ensure precise estimation of key measures of prediction model performance

. pmvalsampsize, type(b) prevalence(0.05) cstat(0.74) lpnormal(-3.25, 0.9) graph
Normal LP distribution with parameters - mean=-3.25, standard deviation=.9

	Samp_size	Perf	SE	CI width
Criteria 1 - 0/E	7305	1	.051	.2
Criteria 2 - C-slope	11307	1	.051	.2
Criteria 3 - C statistic	1967	.74	.026	.1
Final SS	11307	1	.051	.2

Minimum sample size required for model validation based on user inputs = 11307, with 566 events (assuming an outcome prevalence = .05)

Criteria 1 - precise estimation of O/E performance in the validation sample Criteria 2 - precise estimation of the calibration slope in the validation sample Criteria 3 - precise estimation of the C statistic in the validation sample . pmvalsampsize, type(b) prevalence(0.05) cstat(0.74) lpnormal(-3.25, 0.9) graph
Normal LP distribution with parameters - mean=-3.25, standard deviation=.9

	Samp_size			CI width
Criteria 1 - O/E	7305		.051	.2
Criteria 2 - C-slope		1	.051	.2
Criteria 3 - C statistic	1967	.74	.026	.1
Final SS			.051	.2

Minimum sample size required for model validation based on user inputs = 11307 with 566 events (assuming an outcome prevalence = .05)

Criteria 1 - precise estimation of O/E performance in the validation sample Criteria 2 - precise estimation of the calibration slope in the validation sample Criteria 3 - precise estimation of the C statistic in the validation sample

. pmvalsampsize, type(b) prevalence(0.05) cstat(0.74) lpnormal(-3.25, 0.9) graph

Normal LP distribution with parameters - mean=-3.25, standard deviation=.9

	Samp_size			CI width
Criteria 1 - O/E	7305		.051	.2
Criteria 2 - C-slope		1	.051	.2
Criteria 3 - C statistic	1967	.74	.026	.1
Final SS			.051	.2

Minimum sample size required for model validation based on user inputs = 11307, with 566 events (assuming an outcome prevalence = .05)

Criteria 1 - precise estimation of O/E performance in the validation sample Criteria 2 - precise estimation of the calibration slope in the validation sample Criteria 3 - precise estimation of the C statistic in the validation sample

. pmvalsampsize, type(b) prevalence(0.05) cstat(0.74) lpnormal(-3.25, 0.9) graph Options to specify LP distribution include: Normal • Skewed normal c-slope Beta – for predicted probabilities C statistic based normal distributions Graph option for checking

. pmvalsampsize, type(b) prevalence(0.05) cstat(0.74) lpnormal(-3.25, 0.9) graph Density Mean = -3.251SD = 0.901Median = -3.250LQ = -3.859UQ = -2.643Min = -7.796Max = 1.179Skewness = -0.001Kurtosis = 3.001LP

. pmvalsampsize, type(b) prevalence(0.05) cstat(0.74) lpcstat(-3.3) graph
Proportion of observed outcome events is within tolerance
Proportion of outcome events under simulation = .053031 + Target prevalence = .05
Mean in non-event group=-3.3

- Specify C statistic & non-event mean starting value
- Options to aid iteration process include:
 - Trace
 - Tolerance size required for model validation based on user inputs = 10454,
 - Iteration step suming an outcome prevalence = .05)
- Strong assumptions stimation of the calibration slope in the validation sample criteria 3 precise estimation of the C statistic in the validation sample

"Reported model performance measures:

Discrimination = 57/78 (73%)

Calibration = 11/78 (14%)

Overall metrics = 18/78 (23%)"

pmstats

- Many proposed performance statistics exist
 - Time consuming & confusing
- R users have rms
- pmstats calculates key performance measures including:
 - Discrimination
 - Calibration
 - Overall performance
 - Reporting statistics

Predictions in a new sample

• Assuming we have the full published heart surgery model of the form:

$$logit(p) = LP = \alpha + \beta_1 x_1 + \beta_2 x_2 + \dots$$

Manually generate a new LP variable

```
gen LP = -4.55 + (.49*sex) + (.0073*age) + (2.48*histDiabetes) + (1.46*histMI) + (.67*histCVA) + (.37*histPCI) + ...
```

• Given LP & outcome we can now assess the models external performance

pmstats

Discrimination statistics ...

• Estimates with CI's

	Estimate SE		Lower_CI	Upper_CI	
C-Statistic	0.765	0.043	0.681	0.848	
Somers D	0.529	0.085	0.362	0.697	

• Calibration model parameters

Calibration statistics ...

 Continuous & TTE outcomes

	Estimate	Lower_CI	Upper_CI
O/E	0.228	0.001	48.229
E-0	0.399	0.347	0.438
CITL	-2.700	-3.081	-2.320
C-Slope	0.840	0.487	1.193

Further information

Overall performance statistics ...

	Estimate	Lower_CI	Upper_CI		
Cox-Snell R2	0.096	0.051	0.170		
R2 Nagelke~e	0.185	0.102	0.310		
R2 McFadde~s	0.138	0.075	0.240		
Briers Score	0.287	0.259	0.319		

Overall performance statistics

 Linear predictor distribution useful for future research

Additional summary statistics ...

	Mean	SD	Median	LQ	UQ	Min	Max	Skewness	Kurtosis
LP Dist	0.047	1.449	0.181	-0.979	1.189	-3.946	3.295	-0.342	2.468
Sample size Events	296.000 35.000	•	•	•	•		•	•	•

"Only 11 studies presented a calibration plot (11/78; 14% 95% CI 8% to 24%)"

Collins et al. 2014

pmcalplot

- Using the same validation sample
- Predicted probabilities calculated using LP

$$p = \frac{e^{LP}}{1 + e^{LP}}$$

Generate the predicted probabilities

External validation

- Plots observed outcomes against predictions from the model
- Historically plotted in groupings

 Calibration curve allows assessment of calibration at the individual patient level

 Spike plot showing the spread of events/non-events across risk spectrum

• Clear overprediction

• Systematic miscalibration

• Evidence of overfitting

Apparent performance

- Primarily for external validation
- Can be used to check apparent performance!

Final thoughts

pm-suite

Development &

Internal Validation

External Validation & Updating

pmsampsize
pmintval

pmstats
pmcalplot

pmvalsampsize
 pmupdate

pmiecv
pmcstat

pmsplot
pmmeta

Take home

- Important to describe your sample size
 - number of events
 - number of candidate predictor parameters
 - how you came up with your sample size
- Multiple measures of model performance
- Calibration plots
- Baseline survival/hazard at multiple time-points
- Distribution of linear predictor
- Range of predictors

Conclusion

- Prediction modelling is hard!
 - Easy to end up with inaccurate and unreliable models
- Carefully consider
 - Design
 - Evaluation
- Fully report all stages

With thanks to Richard Riley, Gary Collins, Kym Snell, Lucy Archer ...

Thank you

Email: j.ensor@bham.ac.uk

Twitter: @joie_ensor

