UK Stata Conference 2023
London, 7-8 September

A review of machine learning
commands in Stata

Performance and usability evaluation

Giovanni Cerulli
IRCrES-CNR

Research Institute on Sustainable Economic Growth

@ corsgho Nazondle deo Rsrche National Research Council of Italy

RFJ

!STUT CERCA R‘ESC‘CON!CASOSTE

Machine Learning

Definition, relevance, applications

What is Machine Learning ?

Machine Learning
A relatively new approach to data analytics, which places itself 1n

the intersection between statistics, computer science, and artificial
intelligence

ML objective

Turning information into knowledge and value by ‘“letting the
data speak”

Limiting Based on
philosophy ’

Mostly focused on

- Targeted to

Big Data

-m

Model-free
model selection classification

Supervised, Unsupervised, Reinforcement Learning

Artificial intelligence

Machine learning
Supervised
learning
Classification Regression
Categorical Numerical
Outcome Outcome

Unsupervised
learning

Clustering

Reinforcement
learning

Classification

No
Outcome

Outcome

Reward

application examples

ldentifying Predicting heart Customizing Predict stock

risk factors attack by email spam o (?c Self-driving
¢ demographic, : market price

or prostate : . detection - cars
diet and clinical variation

cancer measurements system

Automated Vocal
languages recognition
translators systems
(Google (Amazon
Translate) INISE))

Classifying
pixelsin a
land-satellite
images

The basics of
Machine Learning

Modelling “learning”

More generally, suppose that we observe a quantitative response Y and p
different predictors, X, Xo,...,X,. We assume that there is some
relationship between Y and X = (X, Xo,..., X,), which can be written
in the very general form

E(u|X)=0 : Y — f(X) _I_ u .

Conditional expectation

of Y given X
dependin
(or) P ‘Ne
. on X term
variable ;

and prediction errors

Consider a given estimate f and a set of predictors X, which yields the
prediction Y = f(X). Assume for a moment that both f and X are fixed.
Then, it is easy to show that

E(Y -Y) E[f(X) +e— f(X)]?
= [f(X)-fX)?+ Var(e) ,
N——— S——
Reducible Irreducible

where E(Y — Y)2 represents the average, or expected value, of the squared
difference between the predicted and actual value of Y, and Var(e) repre-
sents the variance associated with the error term e.

10

Machine Learning

!

Techniques for estimating f with the aim of
minimizing the reducible error

!

fAX) = E(Y]X)

The ML

STATISTICS MACHINE LEARNING
Statistical model Learner
Estimation sample Training dataset
Out-of-sample observations Test dataset
Estimation method Algorithm
Observation Instance
Predictor Feature

Dependent variable Target

12

Assessing model

Evaluating the performance of a statistical learning method on a given dataset

l

Quantifying whether the predicted response value for a given observation
IS close to the true response value for that observation

l

Commonly-used measure is the Mean Squared Error (MSE), given by:

= LN = F)?
MSE—n;(yz f(@:))?,

13

e The test erroris the average error that results from using a
statistical learning method to predict the response on a new
observation, one that was not used in training the method.

e |n contrast, the training error can be easily calculated by
applying the statistical learning method to the observations
used in its training.

e But the training error rate often is quite different from the
test error rate, and in particular the former can
dramatically underestimate the latter.

14

Training dataset

N in-sample available observations

|
= {x’ia yz}jlv
|
MSET, = AvejeTe|y; — f (xz')]2

|

Overfitting as flexibility increases

Testing dataset

M out-of-sample observations

l
Te = {zi, yi}1"
1

MSET. = AveieTe [yz' = f(x’&)]z

|

True fitting accuracy

15

Train-MSE

Mean Squared Error

0
[V

<
o

Flexibility

Test-MSE

Train-MSE

o As long as model flexibility (i.e.,
degree-of-freedom) increases, the
train-MSE decreases monotonically.

‘ . This phenomenon is called

overfitting

o On the contrary, the test-MSE first
decreases, and then increases, thus
showing a minimum

16

of the Test-MSE

Suppose we have fit a model f (z) to some training data Tr, and
let (z0,y0) be a test observation drawn from the population. If

the true model is Y = f(X) + € (with f(z) = E(Y|X = x)),
then

E (w0 - f(x0)) = Var(f(a0)) + [Bias(f (x0))]? + Var(e)

| | | |

Test-MSE Variance Bias square Variance of the
of the specific of the specific Irreducible
ML method ML method error term

17

Typically as the fiexibility of f increases, its variance increases,
and its bias decreases. So choosing the flexibility based on
average test error amounts to a bias-variance trade-off.

A

== Bias

s \ar Observe that the error variance
______ Error variance represents a lower bound
for the Test-MSE

v

18

What is optimal tuning?

Any learner is characterized by one or more hyper-
parameters A controlling for model flexibility :

Y=f(X,A)

Optimal tuning means to find the A* that minimizes the
test error among all possible A

19

Model optimal tuning for prediction

Machine Cross-validation
Learning Change tuning parameters
and repeat

Algorithm

Validation

Final performance estimate
20

of ML methods

ML method

Tuning parameter 1

Tuning parameter 2

Tuning parameter 3

Linear Models and GLS

N. of covariates

Lasso

Penalization coefficient

Elastic-Net

Penalization coefficient

Elastic parameter

Nearest-Neighbor

N. of neighbors

Neural Network

N. of hidden layers

N. of neurons

Trees N. of leaves (or tree-depth)
Boosting Learning parameter N. of sequential trees Tree-depth
Random Forest N. of features for splitting N. of bootstrapped trees Tree-depth

Bagging Tree-depth N. of bootstrapped trees
Support Vector Machine C Gamma

Kernel regression Bandwidth Kernel type

Piecewise regression N. of knots

Series regression

N. of series terms

21

Software

Software

Deep Learning Deep Learning

General purpose
platform platform

ML platform

v \ 4 v

T

scikit

g o»
Y al

¥y 41

N 4 /‘ Py SE 2 =S
NS . .Yy Yy
B/ 9 ™ /

B £ &YW 8.4
Yy 88 B Y
| " N N Ji
L W, @& v, v, v4

- >

Keras

23

TensorFlow

stata |3

v

Python/Stata fully
integrated platform via
the SFl environment

Software

MATLAB
Various ML packages but Statistics and Machine Learning Toolbox
poor deep learning Deep Learning Toolbox

libraries
(CARET library)

24

Supervised

First-generation stand-alone commands
-rforest
- boost (only for Windows)
- svm
-sctree, srtree
- subset
-mlp2

Regularized regression/classification in Stata
- Stata Corp LASSO package
- LASSOPACK

Second-generation general purpose ML commands (based on Python’s Scikit-learn)
-pylearn
-pystacked
-r ml stata cv andc _ml stata cv

ML for causal inference
- Lasso-based causal inference
- General ML causal inference (double-debiased ML)

ML hyperparameters’ tuning
-gridsearch
-r ml stata cv andc_ml stata cv

subset

subset

selection

Nonparametric

Semiglobal

regress elasticnet lasso lasso subset
: Subset
Shrinkage
Map of ML methods and
corresponding Stata Parametric
commands
Power Rrajeetion Tree-based
. Pursuit
series models

Polynomial Support
and other vector
series machines
npregress series svmachine
ml_stata_cv
pystacked

Regression

Generalized
additive
models

Neural
networks

gam mlp2 ml_stata_cv
semipar 1 pytree
P pymp treeplot

r c_ml stata cv
pystacked

Random

forests

ml_stata_cv
pyforest
pystacked
rforest

|

|IIHHHHHH%!II

ml_stata_cv
pyadaboost
pystacked
boost

Step Piecewise
function polynomial

regress mkspline npregress series

Kernel-
based

Local Local
linear polynomial

npregress kernel

K-Nearest-
ighbor

ml_stata_cv

First-generation stand-alone commands

-rforest

- svm

- boost (only for Windows)
- sSCctree, srtree

- subset

-mlp2

Random forests algorithm

The syntax to fit a random forest model is

rforest depvar indepvars [if | [in] [, type(string) iterations(int)
numvars (int) depth(int) lsize(int) variance(real) seed(int)

numdecimalplaces (int)]

with the following postestimation command:

predict newwvar| varlist| stubx [’f] ['1771] [’ pr]

type(str)
The type of decision tree. Must be one of "class" (classification) or "reg" (regression).)
The software development in

iterations(int) Stata was built on top of the
Set the number of iterations (trees), default to 100 if not specified. Weka Java implementation
numvars (int) which was developed by the
Set the number of variables to randomly investigate, default to sqrt(number of indepvars). UnlverS|ty of Waikato.
depth(int)

Set the maximum depth of the random forest, default to 0 for unlimited, if not specified.

SVMACRHINES e mdcuenton 9

The full syntax of the command to fit a SVM model is as follows:

svmachines depvar indepvars [zf] [m] [, type(type) kermel(kernel) c(#)
epsilon(#) nu(#) gamma(#) coefO(#) degree(#) shrinking probability
sv(newvar) tolerance(#) verbose cache size(#)]

The most interesting thing a fitted machine-learning model can do is predict response

values. To that end, the standard predict command may be used during postestimation
as follows:

predict newvar [if] [in] [, probability scores verbose |

This command is a wrapper for Python’s 1ibsvm

29

| Y0 Yo Y3 P

boost wvarlist [if | [in]|, distribution(string) maxiter(#) [influence
predict (varname) shrink(#) bag(#) trainfraction(#) interaction(#)
seed(#) |

boost is implemented as a Windows C++ plugin.

30

sctree and srtree .o

sctree— Implementing classification trees via optimal pruning, bagging, random forests, and boosting methods

Syntax

sctree outcome [varlist] [if] [in] model(modeltype) rversion(R_version) [prune(integer) cv_tree prediction(new_data_filename)

in_samp_data(filename) out_samp_data(filename) ntree(integer) mtry(integer) inter_depth(integer) shrinkage(number)
pdp(string) seed(integer)]

Description

sctree is a Stata wrapper for the R functions "tree()", "randomForest()", and "gbm()". It allows to implement the following
classification tree models: (1) classification tree with optimal pruning, (2) bagging, (3) random forests, and (4) boosting.

modeltype_options Description
Model
tree Simple classification tree model
Based on R randomforests bagging and random forest models
boostingl Boosting model with a binary outcome (i.e, y=0,1)
boosting2 Boosting model with a multinomial outcome (e.g., y=A,B,C)

31

subset ...

subset— Implementing covariates best and stepwise subset selection

Syntax

subset outcome [varlist] [if] [in], model(modeltype) rversion(R_version) [nvmax(number) index_values(filename)
matrix_results(filename) optimal_vars(filename)]

Description

subset is a Stata wrapper for the R function "regsubsets()", providing "best", "backward", and "forward" stepwise subset covariates
selection, a Machine Learning approach to select the optimal number of features (covariates) in a supervised linear learning approach
(i.e. a linear regression model) with many covariates. The "forward" model can be also used when p (the number of covariates) is larger
than N (the sample size). This method provides both the optimal subset of covariates for each specific size of the model (i.e., size=1
covariates, size=2 covariates, etc.), and the overall optimal size. The latter one is found using three criteria as validation approaches:
Adjusted R2, CP, and BIC.

modeltype_options Description
Model

Based on R best_subset Best subset selection
backward Backward stepwise selection
forward Forward stepwise selection

32

2-layer neural network algorithm

mlp2 — Multilayer perceptron with 2 hidden layers

mlp2 fit depvar indepvars [if] [in] [, fit_options] Programmed in Mata

depvar is a categorical or continuous variable. The list indepvars cannot be empty.

options Description
layerl(#) numbers of neurons in the 1-st hidden layer; default is the number of levels of depvar
layer2(#) numbers of neurons in the 2-nd hidden layer; default is levell
nobias no bias terms are used
optimizer(string) optimizer; default is optimizer(gd)
loss(string) loss function; default depends on depvar
initvar(#) initializing variance factor; default is initvar(1l)
restarts(#) maximum number of restarts; default is restarts(10)
lrate(#) learning rate of the optimizer; default is lrate(0.1)
friction(#) target friction for momentum optimizers; default is friction(0.9)
fricrate(#) friction rate for momentum optimizers; default is fricrate(0.5)
epsilon(#) gradient smoothing term; default is epsilon(le-8)
decay (#) decay parameter of RMSProp optimizer; default is decay(0.9)
losstol(#) stopping loss tolerance; default is losstol(le-4)
droploutl(#) 1st hidden layer dropout probability; default is dropoutl(0)
droplout2(#) 2nd hidden layer dropout probability; default is dropout2(0)
batch(#) training batch size; default is batch(50) or entire sample
epochs (#) maximum number of iterations; default is epochs(100)
echo(#) report loss values at every # number of iterations; defailt is echo(0)

33

PROS

All these commands are valuable commands for implementing in Stata specific ML methods
rforest and boost allow also for factor importance
sctree and srtree produce a tree plot (also with optimal pruning)

mlp2 is the directly programmed in Mata

CONS

Mainly wrappers for R, Java, C++, and Python (not SFI)

All these commands are not very well suited for the optimal tuning of the hyper-parameters

For optimal tuning, rforest and boost can use gridsearch which has however limitations
Boost runs only under Windows

Subset only consider linear models (no GLM implemented)

mlp2 considers only 2 layers and is not suited for the optimal tuning of the hyper-parameters

34

Regularized regression/classification in Stata

- LASSOPACK
- Stata Corp LASSO package

Stata implementation Via LASSUPACK (Ahrens, Hansen, and Schaffer, 2020)

LASSOPACK includes three commands: lasso2 implements LASSO and
related estimators. cvlasso supports cross-validation, and rlasso offers
the ‘rigorous’ (theory-driven) approach to penalization.

Basic syntax

lasso2 depvar indepvars [r'f] [fn] [y e]

cvlasso depvar indepvars [if] [fn] [g v]

rlasso depvar indepvars [ff] [r’n] [& e]

36

Stata 18 built-in commands

Basic reqularized regression commands

Model Lasso Elasticnet Square-root Lasso
Linear lasso linear elasticnet linear sqrtlasso
Probit lasso probit elasticnet probit

Logit lasso logit elasticnet logit

Poisson lasso poisson elasticnet poisson

Lasso for Cox proportional hazards models

lasso cox and elasticnet cox expand the existing LASSO suite for prediction and model selection to
include a high-dimensional semiparametric Cox proportional hazards model.

37

Stata 18 built-in command

lasso model depvar [(alwaysvars)] othervars [if] [in] [weight] [; options]

model 1s one of linear, logit, probit, or poisson.
alwaysvars are variables that are always included in the model.

othervars are variables that lasso will choose to include in or exclude from the model.

Examples lasso linear y1 (x1 x2) x3-x100
>

lasso logit y2 x1-x100 rseed(1234)

38

(post-estimation commands)

Command Description

bicplot plot Bayesian information criterion function
coefpath plot path of coefficients

cvplot plot cross-validation function

lassocoef display selected coefficients

lassogof goodness of fit after lasso for prediction

lassoinfo information about lasso estimation results
lassoknots knot table of coefficient selection and measures of fit

lassoselect select alternative * (and a™* for elasticnet)

39

PROS

* Both LASSOPACK and LASSO are flexible packages to implement regularized
regression

* Both use three optimal-tuning strategies:
o Information criteria
o Plug-in
o Cross-validation

* Both have useful post-estimation commands (including predict)
* Both have useful graphical representations of results

o Lasso coefficient-path plot
o Cross-validation optimal tuning plot

CONS

e Both do not estimate multinomial lasso/elasticnet

* Absent or not flexible time-series cross-validation for optimal tuning
o LASSOPACK has time-series/panel-data cross-validation available,

but it is poorly flexible and computationally slow .

Second-generation general-purpose ML commands

-pylearn
- pystacked
-r ml stata cv and ¢ ml stata cv

py 1 e a rn (Doste, 2022)

pylearn - Supervised learning algorithms in Stata based on the Scikit-learn library of Python.

pylearn is a set of Stata commands to perform supervised learning in Stata. These commands all exhibit a common
Stata-like syntax for model estimation and post-estimation (i.e., they look very similar to regress). pylearn currently
includes these models:

[R] pytree estimates decision trees.

[R] pyforest estimates random forests.

[R] pymlp estimates multi-layer perceptrons (feed-forward neural networks).
[R] pyadaboost estimates adaptive boosted trees/regressions (AdaBoost).

[R] pygradboost estimates gradient boosted trees.

42

pytree - example

pytree — Decision tree regression and classification with Python and scikit-learn

Syntax

pytree depvar indepvars [if] [in], type(string) [options]

options Description
Main
type(string) string may be regress or classify.

Pre-processing
training(varname)

Decision tree options
criterion(string)
max_depth (#)
min_samples_split (#)
min_weight_fraction_leaf (#)
max_features(numeric)
max_Lleaf_nodes (#)
min_impurity_decrease(#)

varname is an indicator for the training sample

Criterion for splitting nodes (see details below)
Maximum tree depth

Minimum observations per node

Min fraction at leaf

Maximum number of features to consider per tree
Maximum leaf nodes

Propensity to split

43

py S t a C k e d (Ahrens,Hansen, and Schaffer, 2022)

pystacked -- Stata program for Stacking Regression

pystacked implements stacking regression (Wolpert, 1992) via Scikit-learn’s modules:
sklearn.ensemble.StackingRegressor
sklearn.ensemble.StackingClassifier

Stacking is a way of combining multiple supervised machine learners (the "base" or "level-0
learners) into a meta learner.

The currently supported base learners are: linear regression, logit, lasso, ridge, elastic-net,
(linear) support vector machines, gradient boosting, and neural-nets (MLP)

pystacked can also be used with a single base learner and, thus, provides an easy-to-use API
for Scikit-learn's machine learning algorithms

44

pystacked - syntax

pystacked depvar predictors [if | [in]| |, methods (string)

cmdoptl (string) cmdopt2(string) ... cmdoptl10(string)
pipel(string) pipe2(string) ... pipel0(string)
xvarsl (predictors) xvars2(predictors) ... xvarsl10(predictors)

general_options]

Notes:

» methods(string) is used to select base learners, where string is a
list of base learners.

» Options are passed on to base learners via cmdopt1 (string),
cmdopt2(string) to cmdopt10(string).

» pipex(string) are for pipelines; xvarsx* (predictors) allows to
specify a learner-specific variable lists of predictors.

» L[imitation: only 10 base learners supported. .

pystacked - learners

method() type() Machine learner description
ols regress Linear regression
logit class Logistic regression
lassoic regress Lasso with AIC/BIC penalty
lassocv regress Lasso with CV penalty
class Logistic lasso with CV penalt
ridgecv regress Ridge with CV penalty
class Logistic ridge with CV penalty
elasticcv regress Elastic net with CV penalty
class Logistic elastic net with CV
svm regress Support vector regression
class Support vector classification
gradboost regress Gradient boosting regressor
class Gradient boosting classifier
rf regress Random forest regressor
class Random forest classifier
linsvm class Linear SVC
nnet regress Neural net
class Neural net

46

r ml stata cv and ¢ ml stata cv (cerul 2022)

r ml stata cv and ¢ ml stata cv are two commands for implementing machine learning
regression and classification algorithms respectively in Stata 16

* They use the Stata/Python integration (sfi) capability of Stata 16 and allows to implement the
following ML algorithms:

r ml stata_cv
ordinary least squares, elastic-net, tree, boosting, random forest, neural network,
nearest neighbor, support vector machine.

c ml stata cv
tree, boosting, random forest, regularized multinomial, neural network, naive Bayes,

nearest neighbor, support vector machine, standard (unregularized) multinomial.

* They provides hyper-parameters' optimal tuning via K-fold cross-validation using greed search

* These commands make use of the Python Scikit-learn APl to carry out both cross-validation and

prediction "

rml_stata_cv depvar varlist , mlmodel (modeltype) data_test (filename)

seed (integer) [learner_options cv_options other_options]

modeltype_options Description
Model
ols Ordinary least squares
elasticnet Elastic net
tree Tree regression
randomforest Bagging and random forests 1
boost Boosting RegrESSIon
nearestneighbor Nearest neighbor
neuralnet Neural network

svm Support vector machine

48

c_ml_stata_cv depvar varlist , mlmodel (modeltype) data_test (filename)

seed (integer) [learner_options cv_options other_options]

modeltype_options

Description

Model
tree
randomforest
boost
regmult
nearestneighbor
neuralnet
naivebayes
svm
multinomial

Classification tree

Bagging and random forests

Boosting

Regularized multinomial . e .
Nearest Neighbor I f

Neural network C aSSI Icatlon
Naive Bayes

Support vector machine

Standard multinomial

49

PROS

All three commands are valuable and flexible commands for implementing in Stata many ML methods
pylearn is very flexible, as it is a perfect duplication in Stata of the Scikit-learn API of Python

pystacked is also very flexible as pretty all the Scikit-learn’s modules options are implemented.
Also, it allows for stacking regression and classification

r ml stata_cv and c_ml_stata_cv allow for a larger set of learners to implement (for
example, the nearest-neighbor and the regularized multinomial'). Also, they allow for grid-search for
optimal tuning using cross-validation using sklearn.model selection.GridSearchCV. This
is not carried out by neither pylearn, nor pystacked

CONS

pylearn implements only a few learners and does not provide for grid-search for optimal tuning
using cross-validation

pystacked does not provide for grid-search for optimal tuning using cross-validation and does not
provide stacking for classification when the outcome is multinomial

r ml_stata_cv and c_ml_stata_cv are a little less flexible - as only the most important
options (main hyperparameters) of the Scikit-learn’s modules are implemented. Also, it does not have
a predict post-estimation command (as predictions are automatically generated)

50

ML and Causal Inference
with Stata

Growing literature exploits machine learning (ML) to improve

In applications, we may have high-dimensional controls and/or instruments
Also, controls and/or instruments can enter through an unknown functions
Two approaches for integrating ML and ClI:

1. Lasso-based approach
(Belloni, Chernozhukov, and Hansen, 2014; Belloni et al., 2012)

2. Double-debiased ML (DDML)
(Chernozhukov et al., 2018; Chernozhukov et al., 2021).

Lasso causal inference
with Stata

Lasso HD treatment effects

Cov(d; €)

Vi = -+ Bixi1+ ...+ ﬂpx,-,p +-€;
N’

w
alim nuisance

Exogeneity Endogeneity
Cov(d;e)=0 Cov(d;e) #0

54

exogeneity

Our model is

yi = [l + Bixiy + ...+ BpXip +<i.
\\.,-/

ﬁ
alm nuisance

The causal variable of interest or “treatment” is d;. The xs are the set of
potential controls and not directly of interest. We want to obtain an
estimate of the parameter a.

* How to infer correctly on a?
>« Which controls to select?
* Whatifp>>N

55

Strategies to estimate «

* Naive approach
* Partialing-out

e Double-selection

Lasso In Stata

Lasso commands for causal inference

Model Partialing-out Double-selection Cross-fit partialing-out
Linear poregress dsregress Xporegress

Logit pologit dslogit xpologit

Poisson popoisson dspoisson Xpopoisson

Linear IV poivregress Xpoivregress

57

pdslasso

Basic syntax |

pdslasso depvar d_varlist (hd_controls_varlist) [if |[in][, ...]

with many options and features, including:
o heteroskedastic- and cluster-robust penalty loadings.
o LASSO or Sqrt-LASSO
o support for Stata time-series and factor-variables
o pweights and aweights
o fixed effects and partialling-out unpenalized regressors

IMPORTANT: pdslasso provides 3 estimates of the effect:

Partialling-out (PO) approach:
e OLS using CHS lasso-orthogonalized vars
e OLS using CHS post-lasso-orthogonalized vars

Double-selection (DS) approach:
e OLS with PDS-selected variables and full regressor set

g

ivlasso

Basic syntax

ivlasso depvar d_varlist (hd_controls_varlist) (endog_d_varlist =
high__dimensional__1Vs) [if] [in] [s]

IMPORTANT: Compared to the Stata built-in
poivregress, the user-written command ivlasso
performs two additional effect estimates:
* |V using CHS lasso-orthogonalized vars
* |V with PDS-selected variables and full regressor set

IMPORTANT: ivlasso provides 3 estimates of the effect:

Partialling-out (PO) approach:
* IV using CHS lasso-orthogonalized vars
——p ¢ [V using CHS post-lasso-orthogonalized vars —

The IV procedure used is however the same, that is:
Lasso IV-2. The difference is in the last step, where
ivlasso uses the DS approach or the PO with lasso
coefficients as alternatives.

Double-selection (DS) approach:
* |V with PDS-selected variables and full regressor set

In sum, poivregress uses the ivlasso PO type:
* |V using CHS post-lasso-orthogonalized vars

Double-debiased ML

* The Lasso learner might not be the best-performing machine
learner in specific settings (parametric model)

* The Lasso relies on the approximate sparsity assumption, which
might not be appropriate in some settings

* Double-Debiased Machine Learning (DDML) allows to exploit
various machine learners other than the Lasso. So, it is a more
general approach for integrating ML and Cl

Three sources of bias when estimating ATEs by ML

1.Bias due to absence of orthogonalization

Easily solved using the Frisch-Waugh-Lovell orthogonalization
(equivalent to the Robinson’s partially linear model)

2. Bias due to learner’s low rate of convergence

Fortunately, most ML methods have sufficiently fast rate of convergence,
including neural nets, random forests, lasso and boosting

3. Bias due to learner’s over-fitting
Easily solved by cross-fitting estimation

62

Treatment models to estimate
A. Model with homogenous treatment effect (ATE = ATET = ATENT)

y=10-d+g(x)+e

[partial]

Model 1: (d L ¢)| x

[interactive]

Model 3: (d correlated to €)| x

B. Model with heterogenous treatment effect (ATE = ATET # ATENT)

y=g(d,x) + €

[1v]

Model 2: (d L)| x

[interactiveiv]

Model 4: (d correlated to €)| x

63

ddml

ddml -- Stata package for Double Debiased Machine Learning

ddml implements algorithms for causal inference aided by supervised machine learning as

proposed in Double/debiased machine learning for treatment and structural parameters

(Econometrics Journal, 2018).

Five different models are supported, allowing for binary or continuous treatment variables and
endogeneity, high-dimensional controls and/or instrumental variables. ddml supports a

variety of different ML programs, including but not limited to 1assopack and pystacked.

ddml - syntax

Estimation with ddml proceeds in four steps.
Step 1. Initialize ddml and select model:
ddml init model [if] [in] [, mname(name) kfolds(integer) fcluster(varname) foldvar(varlist) reps(integer) norandom tabfold vars(varlist)]
where model is either partial, iv, interactive, fiv, interactiveiv; see model descriptions.
Step 2. Add supervised ML programs for estimating conditional expectations:
ddml eq [, mname(name) vname(varname) learner(varname) vtype(string) predopt(string) 1 : command depvar vars [, cmdopt]

where, depending on model chosen in Step 1, eq is either E[Y|X] E[Y|D,X] E[Y|X,Z] E[D|X] E[D|X,Z] E[Z|X]. command is a supported supervised ML program (e.g.
pystacked or cvlasso). See supported programs.

Note: Options before ":" and after the first comma refer to ddml. Options that come after the final comma refer to the estimation command.
Step 3. Cross-fitting:
ddml crossfit [, mname(name) shortstack]
This step implements the cross-fitting algorithm. Each learner is fitted iteratively on training folds and out-of-sample predicted values are obtained.
Step 4. Estimate causal effects:
ddml estimate [, mname(name) robust cluster(varname) vce(type) atet ateu trim(real)]

The ddml estimate command returns treatment effect estimates for all combination of learners added in Step 2.

65

ML hyperparameters’ tuning

-gridsearch
-r ml stata cv andc _ml stata cv

gridsearCh (Schonlau, 2021)

gridsearch runs a user-specified statistical learning algorithm repeatedly with a grid
of values corresponding to one or two tuning parameters. This facilities the tuning of
statistical learning algorithms.

After evaluating all combinations of values according to criterion, gridsearch lists the
best combination and the corresponding value of the criterion.

Only estimation commands that allow the use of predict after the estimation
command can be used.

The program does not currently support the prediction of multiple variables as would be
needed, for example, for multinomial logistic regression

67

gridsearch - syntax

gridsearch — Optimizing tuning parameter levels with a grid search

Syntax
gridsearch command depvar indepvars [if] [in] , method(strl str2) parlname(str) parllist(numlist) criterion(str) [options 1]

gridsearch discrim subcommand indepvars [if] [in] , method(strl str2) parlname(str) parllist(numlist) criterion(str) group(depvar) [options]

options Description
parlname(string) Name of the a tuning parameter of command
parllist(numlist) Values to explore for tuning parameter
par2name(string) Name of the an optional second tuning parameter of command
par2list(numlist) Values to explore for the second tuning parameter
criterion(string) Evaluation criterion
method(strl str2) strl specifies train-validation method; str2 specifies corresponding option.
nogrid Explore all parameter values as a list (do not form a grid)
options Additional options are passed to the estimation command

predoptions(string) Any prediction options are passed to the prediction command

68

PROS

All commands are valuable commands for hyper-parameter optimal tuning
gridsearch allows for hyper-parameter optimal tuning using Stata native code
gridsearch allows to use whatever learner having a predict post-estimation

r ml_stata_cv and c¢_ml_stata_cv allow for grid-search for optimal tuning using cross-
validation using sklearn.model selection.GridSearchCV. Also, they allow for optimal
tuning of the regularized multinomial

CONS

gridsearch allows only for the tuning of only two hyper-parameters.
gridsearch is rather slow and does not allow for optimal tuning of the regularized multinomial

r ml stata_cv and c_ml_stata_cv do not have a predict post-estimation command (as
predictions are automatically generated). They allow for only a sunsert of hyper-parameters tuning
(the most relevant, though!)

69

Books on Machine Learning using Stata

Giovanni Cerulli Matthias Schonlau

Fundamentals ApplIEd

of Supervised

Machine Learning Statistical
Learning

Conclusions

e Stata has many valuable ML commands, both native and based on other software

 The integration with Python is key for ML implementation

« However, there is poor development for grid-search for hyper-parameters optimal
tuning. | would suggest the Stata Corp to develop an improvement of the GRIDSEARCH

command using an architecture similar to the CARET package in R

e Stata users can provide deep-learning implementations by integrating into Stata the
KERAS package of Python. Useful also for advanced unsupervised learning

 Stata has poor implementations of reinforcement learning (excluding the OPL command

for “optimal policy learning” provided by Cerulli (2023) presented in Palo Alto at the US
Stata Conference)

71

References 1/2

Ahrens, A., Hansen, C., Schaffer, M. E. & Wiemann, T. (2023, January 23). ddml: Double/debiased machine learning
in Stata. Statistical Software Components S459175, Boston College Department of Economics, revised 30 Apr 2023.

Ahrens, A., Hansen, C.B., Schaffer, M.E. (2018). pdslasso and ivlasso: Progams for post-selection and post-
regularization OLS or IV estimation and inference. http://ideas.repec.org/c/boc/bocode/s458459.html

Ahrens, A., Hansen, C. B. & Schaffer, M. E. (March 2020). lassopack: Model selection and prediction with
regularized regression. Stata Journal, 20(1), 176-235.

Ahrens, A., Hansen, C. B., & Schaffer, M. E. (Accepted/In press). pystacked: Stacking generalization and machine
learning in Stata. Stata Journal. http://10.48550/arXiv.2208.10896.

Balov N. (2018). Multilayer perceptrons in Stata. https://nbalov.github.io/posts/mlp2/mip2.html

Cerulli, G. (2019). "SUBSET: Stata module to implement best covariates and stepwise subset selection." Statistical
Software Components S458647, Boston College Department of Economics, revised December 6, 2022.

Cerulli, G. (2019). "SRTREE: Stata module to implement regression trees via optimal pruning, bagging, random
forests, and boosting methods." Statistical Software Components S458646, Boston College Department of
Economics, revised January 26, 2022. 72

References 2/2

e Cerulli, G. (2019). "SCTREE: Stata module to implement classification trees via optimal pruning, bagging, random
forests, and boosting methods." Statistical Software Components S458645, Boston College Department of
Economics, revised July 11, 2022.

* Cerulli, G. (2022). Machine Learning using Stata/Python. The Stata Journal, 22(4), 1-39.

* Droste, M. (2020). pylearn. https://github.com/NickCH-K/MLRtime/. [Online; accessed 02-December-2021].

* Guenther, N. and Schonlau, M (2016). "Support vector machines". In: Stata Journal, 16.4, 917-937(21).

* Schonlau, M. (2005). Boosted Regression (Boosting): An introductory tutorial and a Stata plugin. The Stata Journal,
5(3), 330-354.

* Schonlau, M. (2020, March). The Random Decision Forest Algorithm for Statistical Learning. The Stata Journal, 20(1),
3-29.

* Schonlau, M. (2021). GRIDSEARCH: Stata module to optimize tuning parameter levels with a grid search. Retrieved
from https://EconPapers.repec.org/RePEc:boc:bocode:s458859.

73

